The Use of Gauss-hermite Quadrature in the Determination of the Molecular Weight Distribution of Linear Polymers by Rheometry

نویسندگان

  • T. M. Farias
  • N. S. M. Cardozo
  • A. R. Secchi
چکیده

The molecular weight distribution (MWD) and its parameters are of the fundamental importance in the characterization of polymers. Therefore, the development of techniques for faster MWD determination is a relevant issue. This paper aims at implementing one of the relaxation models from double reptation theory proposed in the literature and analyzing the numeric strategy for the evaluation of the integrals appearing in the relaxation model. The inverse problem, i.e., the determination of the MWD from rheological data using a specified relaxation model and an imposed distribution function was approximated. Concerning the numerical strategy for the evaluation of the integrals appearing in the relaxation models, the use of Gauss-Hermite quadrature using a new change of variables was proposed. In the test of samples of polyethylene with polydispersities less than 10, the application of this methodology led to MWD curves which provided a good fit of the experimental SEC data.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

مطالعه اثر ریزساختار پلی‌بوتادین خاتمه‌یافته با هیدروکسیل (HTPB) بر خواص مکانیکی کامپوزیت پرانرژی

The mechanical properties of the final energetic composite depend mainly on the HTPB prepolymer microstructure; thus, the prepolymer microstructure of HTPB is one of the important factors influencing the mechanical properties of high-energy composite based on HTPB resin. In this paper, the effect of microstructure parameters of HTPB on the behavior and mechanical properties of its high-energy c...

متن کامل

A note on multivariate Gauss-Hermite quadrature

The nodes xi and weights wi are uniquely determined by the choice of the domain D and the weighting kernel ψ(x). In fact, one may go as far as to say that the choice of the domain and the kernel defines a quadrature. In particular, the location of the nodes xi are given by the roots of the polynomial of order m in the sequence of orthonormal polynomials {πj} generated by the metric 〈πj|πk〉 := ∫...

متن کامل

Sparse Gauss–Hermite Quadrature Filter with Application to Spacecraft Attitude Estimation

A novel sparse Gauss–Hermite quadrature filter is proposed using a sparse-grid method for multidimensional numerical integration in the Bayesian estimation framework. The conventional Gauss–Hermite quadrature filter is computationally expensive for multidimensional problems, because the number of Gauss–Hermite quadrature points increases exponentially with the dimension. The number of sparse-gr...

متن کامل

Gauss-Hermite interval quadrature rule

The existence and uniqueness of the Gaussian interval quadrature formula with respect to the Hermite weight function on R is proved. Similar results have been recently obtained for the Jacobi weight on [−1, 1] and for the generalized Laguerre weight on [0,+∞). Numerical construction of the Gauss–Hermite interval quadrature rule is also investigated, and a suitable algorithm is proposed. A few n...

متن کامل

Investigation of Linear and Nonlinear Buckling of Orthotropic Graphene Sheets with Nonlocal Elasticity Theories

In this paper, analysis of linear and nonlinear buckling of relatively thick orthotropic graphene sheets is carried out under mechanical load based on elasticity theories. With the help of  nonlocal elasticity theory, the principle of virtual work, first order shear theory and Von-Karman nonlinear strain, the dominant relationship in terms of obtained displacements has been obtained, and the me...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012